Sets block - edit values highlighted in RED to match your data.begin sets; CHARSET COI=1-688; CHARSET 16S=689-1250; CHARSET morph=1251-1322; CHARSET COIpos1=1-688\3; CHARSET COIpos2=2-688\3; CHARSET COIpos3=3-688\3; TAXSET outgroup=taxon1 taxon2 taxon3; TAXSET NoMorph=taxon33 taxon38 taxon50; TAXSET COIonly=1-33; TAXSET beetles=22 25 27 33 35 40; END;
Simple Parsimony analysis - edit values highlighted in RED to match your data.begin paup; log start replace=yes file=FILENAME_log.txt; set autoclose=yes criterion=parsimony root=outgroup storebrlens=yes increase=auto; outgroup MyOutgroup; hsearch addseq=random nreps=1000 swap=tbr hold=1; savetrees file=mytrees.tre format=altnex brlens=yes; contree all / majrule=yes strict=no treefile=myConsensustree.tre; log stop; END;
Parsimony Bootstrap analysisbegin paup; log start replace=yes file=FILENAME_log.txt; set autoclose=yes criterion=parsimony root=outgroup storebrlens=yes increase=auto; outgroup MyOutgroup; bootstrap nreps=1000 search=heuristic/ addseq=random nreps=10 swap=tbr hold=1; savetrees from=1 to=1 file=MyBootTree.tre format=altnex brlens=yes savebootp=NodeLabels MaxDecimals=0; log stop; END;
Simple Maximum Likelihood analysisbegin paup; log start replace=yes file=FILENAME_log.txt; set criterion=distance autoclose=yes storebrlens=yes increase=auto root=outgroup; outgroup MyOutgroup; DSet distance=JC objective=ME base=equal rates=equal pinv=0 subst=all negbrlen=setzero; NJ showtree=no breakties=random; set criterion=like; Lset Base=(0.2892 0.2928 0.1309) Nst=6 Rmat=(3.7285 46.5293 1.3888 2.3793 16.4374) Rates=gamma Shape=0.9350 Pinvar=0.5691; hsearch addseq=random nreps=5 swap=tbr; savetrees file=MyML_tree.tre format=altnex brlens=yes maxdecimals=6; log stop; END;
Maximum Likelihood Bootstrap analysisbegin paup; log start replace=yes file=FILENAME_log.txt; set criterion=like autoclose=yes storebrlens=yes increase=auto root=outgroup; outgroup MyOutgroup; Lset Base=(0.2892 0.2928 0.1309) Nst=6 Rmat=(3.7285 46.5293 1.3888 2.3793 16.4374) Rates=gamma Shape=0.9350 Pinvar=0.5691; bootstrap nreps=1000 search=heuristic/ addseq=random swap=tbr hold=1; savetrees from=1 to=1 file=MyMLboot_tree.tre format=altnex brlens=yes savebootp=NodeLabels MaxDecimals=0; log stop; END;
Partition Homogeneity test (a.k.a Incongruence Length Difference test)Begin sets; charset Molecular = 1 - 650; charset Morphological = 651 - .; End; begin paup; set increase; log file=LetsLogResults.log append; charpartition P1 = Molecular:Molecular, Morphological:Morphological; exclude uninf ; [because invariant and autapomorphic characters increase probability of false negatives in the ILD test] hompart partition=P1 nreps=1000 / start=stepwise addseq=random nreps=3 savereps=no randomize=addseq rstatus=no hold=1 swap=tbr multrees=yes timelimit=600; [Do ILD test for datasets of partition P1, 1000 replicates, 3 random additions per replicate, use TBR swapping, move on to next if random addition replicate takes longer than 10 minutes.] include all; log stop; end;
MrBayes analysis using GTR+I+Γ - edit values highlighted in RED to match your data.begin mrbayes; set autoclose=yes nowarn=yes; lset nst=6 rates=invgamma; mcmc ngen=10000000 relburnin=yes burninfrac=0.25 samplefreq=1000 printfreq=10000 nchains=4 savebrlens=yes; sump burnin=2500; sumt burnin=2500; END;
Partitioned MrBayes analysis using mixed modelsbegin mrbayes; set autoclose=yes nowarn=yes; charset 1stpos = 1-720\3; charset 2ndpos = 2-720\3; charset 3rdpos = 3-720\3; partition bycodon = 3:1stpos,2ndpos,3rdpos; set partition = bycodon; unlink shape=(all) pinvar=(all) statefreq=(all) revmat=(all); prset applyto=(all) ratepr=variable; lset applyto=(1,3) nst=6 rates=invgamma; lset applyto=(2) nst=2 rates=gamma; mcmc ngen=10000000 relburnin=yes burninfrac=0.25 samplefreq=1000 printfreq=10000 nchains=4 savebrlens=yes; sump burnin=2500; sumt burnin=2500; END;